\(\int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx\) [27]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 78 \[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=-\frac {(a-b) x}{2 (a+b)^2}-\frac {\sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{(a+b)^2 d}+\frac {\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d} \]

[Out]

-1/2*(a-b)*x/(a+b)^2+1/2*cosh(d*x+c)*sinh(d*x+c)/(a+b)/d-arctan(b^(1/2)*tanh(d*x+c)/a^(1/2))*a^(1/2)*b^(1/2)/(
a+b)^2/d

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3744, 482, 536, 212, 211} \[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=-\frac {\sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{d (a+b)^2}+\frac {\sinh (c+d x) \cosh (c+d x)}{2 d (a+b)}-\frac {x (a-b)}{2 (a+b)^2} \]

[In]

Int[Sinh[c + d*x]^2/(a + b*Tanh[c + d*x]^2),x]

[Out]

-1/2*((a - b)*x)/(a + b)^2 - (Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/((a + b)^2*d) + (Cosh[c
 + d*x]*Sinh[c + d*x])/(2*(a + b)*d)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 482

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 3744

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff^(m + 1)/f), Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)
^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {x^2}{\left (1-x^2\right )^2 \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d} \\ & = \frac {\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d}-\frac {\text {Subst}\left (\int \frac {a-b x^2}{\left (1-x^2\right ) \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{2 (a+b) d} \\ & = \frac {\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d}-\frac {(a-b) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{2 (a+b)^2 d}-\frac {(a b) \text {Subst}\left (\int \frac {1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{(a+b)^2 d} \\ & = -\frac {(a-b) x}{2 (a+b)^2}-\frac {\sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{(a+b)^2 d}+\frac {\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.67 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.86 \[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {-2 (a-b) (c+d x)-4 \sqrt {a} \sqrt {b} \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )+(a+b) \sinh (2 (c+d x))}{4 (a+b)^2 d} \]

[In]

Integrate[Sinh[c + d*x]^2/(a + b*Tanh[c + d*x]^2),x]

[Out]

(-2*(a - b)*(c + d*x) - 4*Sqrt[a]*Sqrt[b]*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]] + (a + b)*Sinh[2*(c + d*x)])
/(4*(a + b)^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(150\) vs. \(2(66)=132\).

Time = 1.19 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.94

method result size
risch \(-\frac {a x}{2 \left (a +b \right )^{2}}+\frac {x b}{2 \left (a +b \right )^{2}}+\frac {{\mathrm e}^{2 d x +2 c}}{8 d \left (a +b \right )}-\frac {{\mathrm e}^{-2 d x -2 c}}{8 d \left (a +b \right )}+\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{2 \left (a +b \right )^{2} d}-\frac {\sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right )}{2 \left (a +b \right )^{2} d}\) \(151\)
derivativedivides \(\frac {-\frac {4}{\left (8 a +8 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {8}{\left (16 a +16 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {\left (-a +b \right ) \ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a +b \right )^{2}}+\frac {2 a^{2} b \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{\left (a +b \right )^{2}}+\frac {4}{\left (8 a +8 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {8}{\left (16 a +16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (a -b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 \left (a +b \right )^{2}}}{d}\) \(310\)
default \(\frac {-\frac {4}{\left (8 a +8 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2}}+\frac {8}{\left (16 a +16 b \right ) \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+\frac {\left (-a +b \right ) \ln \left (1+\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 \left (a +b \right )^{2}}+\frac {2 a^{2} b \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{\left (a +b \right )^{2}}+\frac {4}{\left (8 a +8 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {8}{\left (16 a +16 b \right ) \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (a -b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 \left (a +b \right )^{2}}}{d}\) \(310\)

[In]

int(sinh(d*x+c)^2/(a+b*tanh(d*x+c)^2),x,method=_RETURNVERBOSE)

[Out]

-1/2*a*x/(a+b)^2+1/2*x/(a+b)^2*b+1/8/d/(a+b)*exp(2*d*x+2*c)-1/8/d/(a+b)*exp(-2*d*x-2*c)+1/2*(-a*b)^(1/2)/(a+b)
^2/d*ln(exp(2*d*x+2*c)-(2*(-a*b)^(1/2)-a+b)/(a+b))-1/2*(-a*b)^(1/2)/(a+b)^2/d*ln(exp(2*d*x+2*c)+(2*(-a*b)^(1/2
)+a-b)/(a+b))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 306 vs. \(2 (66) = 132\).

Time = 0.29 (sec) , antiderivative size = 916, normalized size of antiderivative = 11.74 \[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\text {Too large to display} \]

[In]

integrate(sinh(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

[-1/8*(4*(a - b)*d*x*cosh(d*x + c)^2 - (a + b)*cosh(d*x + c)^4 - 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 - (a
+ b)*sinh(d*x + c)^4 + 2*(2*(a - b)*d*x - 3*(a + b)*cosh(d*x + c)^2)*sinh(d*x + c)^2 - 4*sqrt(-a*b)*(cosh(d*x
+ c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 +
2*a*b + b^2)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)
^2 + 2*(3*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a
*b + b^2)*cosh(d*x + c)^3 + (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c) - 4*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*
cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(-a*b))/((a + b)*cosh(d*x + c)^4 + 4*(a + b
)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x
+ c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b))
+ 4*(2*(a - b)*d*x*cosh(d*x + c) - (a + b)*cosh(d*x + c)^3)*sinh(d*x + c) + a + b)/((a^2 + 2*a*b + b^2)*d*cosh
(d*x + c)^2 + 2*(a^2 + 2*a*b + b^2)*d*cosh(d*x + c)*sinh(d*x + c) + (a^2 + 2*a*b + b^2)*d*sinh(d*x + c)^2), -1
/8*(4*(a - b)*d*x*cosh(d*x + c)^2 - (a + b)*cosh(d*x + c)^4 - 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 - (a + b
)*sinh(d*x + c)^4 + 2*(2*(a - b)*d*x - 3*(a + b)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 8*sqrt(a*b)*(cosh(d*x + c)
^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x
 + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)^2 + a - b)*sqrt(a*b)/(a*b)) + 4*(2*(a - b)*d*x*cosh(d*x + c) - (a
+ b)*cosh(d*x + c)^3)*sinh(d*x + c) + a + b)/((a^2 + 2*a*b + b^2)*d*cosh(d*x + c)^2 + 2*(a^2 + 2*a*b + b^2)*d*
cosh(d*x + c)*sinh(d*x + c) + (a^2 + 2*a*b + b^2)*d*sinh(d*x + c)^2)]

Sympy [F]

\[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int \frac {\sinh ^{2}{\left (c + d x \right )}}{a + b \tanh ^{2}{\left (c + d x \right )}}\, dx \]

[In]

integrate(sinh(d*x+c)**2/(a+b*tanh(d*x+c)**2),x)

[Out]

Integral(sinh(c + d*x)**2/(a + b*tanh(c + d*x)**2), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 316 vs. \(2 (66) = 132\).

Time = 0.30 (sec) , antiderivative size = 316, normalized size of antiderivative = 4.05 \[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {b \log \left ({\left (a + b\right )} e^{\left (4 \, d x + 4 \, c\right )} + 2 \, {\left (a - b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a + b\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} - \frac {b \log \left (2 \, {\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + {\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )} + a + b\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} d} - \frac {{\left (a b - b^{2}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a b} d} + \frac {{\left (a b - b^{2}\right )} \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{4 \, {\left (a^{2} + 2 \, a b + b^{2}\right )} \sqrt {a b} d} + \frac {b \arctan \left (\frac {{\left (a + b\right )} e^{\left (-2 \, d x - 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{2 \, \sqrt {a b} {\left (a + b\right )} d} - \frac {d x + c}{2 \, {\left (a + b\right )} d} + \frac {e^{\left (2 \, d x + 2 \, c\right )}}{8 \, {\left (a + b\right )} d} - \frac {e^{\left (-2 \, d x - 2 \, c\right )}}{8 \, {\left (a + b\right )} d} \]

[In]

integrate(sinh(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

1/4*b*log((a + b)*e^(4*d*x + 4*c) + 2*(a - b)*e^(2*d*x + 2*c) + a + b)/((a^2 + 2*a*b + b^2)*d) - 1/4*b*log(2*(
a - b)*e^(-2*d*x - 2*c) + (a + b)*e^(-4*d*x - 4*c) + a + b)/((a^2 + 2*a*b + b^2)*d) - 1/4*(a*b - b^2)*arctan(1
/2*((a + b)*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))/((a^2 + 2*a*b + b^2)*sqrt(a*b)*d) + 1/4*(a*b - b^2)*arctan(1/2
*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/((a^2 + 2*a*b + b^2)*sqrt(a*b)*d) + 1/2*b*arctan(1/2*((a + b)*e
^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/(sqrt(a*b)*(a + b)*d) - 1/2*(d*x + c)/((a + b)*d) + 1/8*e^(2*d*x + 2*c)/((
a + b)*d) - 1/8*e^(-2*d*x - 2*c)/((a + b)*d)

Giac [F]

\[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\int { \frac {\sinh \left (d x + c\right )^{2}}{b \tanh \left (d x + c\right )^{2} + a} \,d x } \]

[In]

integrate(sinh(d*x+c)^2/(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

sage0*x

Mupad [B] (verification not implemented)

Time = 2.21 (sec) , antiderivative size = 198, normalized size of antiderivative = 2.54 \[ \int \frac {\sinh ^2(c+d x)}{a+b \tanh ^2(c+d x)} \, dx=\frac {{\mathrm {e}}^{2\,c+2\,d\,x}}{8\,d\,\left (a+b\right )}-\frac {{\mathrm {e}}^{-2\,c-2\,d\,x}}{8\,d\,\left (a+b\right )}-\frac {x\,\left (a-b\right )}{2\,{\left (a+b\right )}^2}-\frac {\sqrt {-a}\,\sqrt {b}\,\ln \left (\sqrt {-a}\,b^{3/2}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}-1\right )+{\left (-a\right )}^{3/2}\,\sqrt {b}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )-2\,a\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{2\,d\,{\left (a+b\right )}^2}+\frac {\sqrt {-a}\,\sqrt {b}\,\ln \left (\sqrt {-a}\,b^{3/2}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}-1\right )+{\left (-a\right )}^{3/2}\,\sqrt {b}\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )+2\,a\,b\,{\mathrm {e}}^{2\,c+2\,d\,x}\right )}{2\,d\,{\left (a+b\right )}^2} \]

[In]

int(sinh(c + d*x)^2/(a + b*tanh(c + d*x)^2),x)

[Out]

exp(2*c + 2*d*x)/(8*d*(a + b)) - exp(- 2*c - 2*d*x)/(8*d*(a + b)) - (x*(a - b))/(2*(a + b)^2) - ((-a)^(1/2)*b^
(1/2)*log((-a)^(1/2)*b^(3/2)*(exp(2*c + 2*d*x) - 1) + (-a)^(3/2)*b^(1/2)*(exp(2*c + 2*d*x) + 1) - 2*a*b*exp(2*
c + 2*d*x)))/(2*d*(a + b)^2) + ((-a)^(1/2)*b^(1/2)*log((-a)^(1/2)*b^(3/2)*(exp(2*c + 2*d*x) - 1) + (-a)^(3/2)*
b^(1/2)*(exp(2*c + 2*d*x) + 1) + 2*a*b*exp(2*c + 2*d*x)))/(2*d*(a + b)^2)